Toward Secure Network Coding in Wireless Networks: Threats and Challenges

Jing Dong, Reza Curtmola, Ruben Sethi, Cristina Nita-Rotaru
Department of Computer Science and CERIAS
Purdue University
Network Coding

- A new paradigm in network protocol design
- *Intermediate nodes actively mix input packets to produce output packets*
- Applications
 - Peer-to-peer networks
 - Distributed storage
 - Wireless networks

From Ahlswede, et al, 2000
Network Coding in Wireless Networks

- Fits naturally in wireless networks
- Exploits broadcast advantage and opportunistic listening

Benefits
- Improved throughput
- Improved energy efficiency
- Improved reliability
Need for Security in Wireless

- Primarily performance-oriented
 - Numerous design choices and optimizations
 - No security considerations
- Wireless networks are inherently vulnerable
 - Easy eavesdropping, packet injection, jamming, spoofing
 - Easy physical access, software bugs, misconfigurations

Performance Security
What This Talk is About ...

Study security implications of current network coding designs
- Intra-flow network coding
- Inter-flow network coding
Related Work

- **Exclusively** on packet pollution attacks
 - Attacker node injects corrupted packets in the network
- **Pollution Defense**
 - **Cryptographic** [Charlies, et al; CISS 06], [Zhao, et al; ISIT 07], [Yu, et al; Infocom 08], [Krohn, et al; S&P 2004]
 - **Information theoretic** [Ho, et al; ISIT 04], [Jaggi, et al; Infocom 07]
 - **Network error correction coding** [Silva, et al; IEEE Info Theory 07], [Koetter, et al; IEEE Tran. Info Theory 08]
Outline

- System overview
 - Intra-flow network coding
 - Inter-flow network coding
- Attacker model
- Threat analysis
 - Intra-flow network coding
 - Inter-flow network coding
- Experiments
- Conclusion
Network Coding Frameworks

- **Intra-Flow Network Coding**
 - *Mix packets within individual flows*
 - MORE [Chachulski, et al; Sigcomm 07], [Zhang and Li; ICDCS 08], [Zhang and Li; Mobihoc 08], MIXIT [Katti, et al; Sigcomm 08]

- **Inter-Flow Network Coding**
 - *Mix packets across multiple flows*
 - COPE [Katti, et al; Sigcomm 06], DCAR [Le, et al; ICDCS 08], [Das, et al; NSDI 08]
Attacker Model

- Attacker goal: denial of service attack
- Insider attacks
 - Eavesdropping, injection, modification
 - May collude
 - In-band or out-of-band wormholes
 - Flood rushing attacks
- Do not consider jamming or MAC-layer attacks
Intra-Flow Network Coding
Intra-Flow Network Coding

- Packets are sent in batches
- Source
 - Broadcasts coded packets
- Forwarder nodes
 - Buffer coded packets
 - Forward new coded packets
- Destination
 - Buffer coded packets
 - Decode packets
 - Send ACK to source

Coded packet p_c:

$$p_c = c_1 p_1 + c_2 p_2 + \ldots + c_n p_n$$
Components of Intra-Flow Network Coding

- Forwarding node selection and rate assignment
- Data packet forwarding
- Acknowledgment delivery
Forwarding Node Selection and Rate Assignment

- Require global knowledge
- Achieved in link state routing like approach
- Attacks
 - Link Quality Falsification
 - Link Quality Modification
 - Wormholes

Attacks cause incorrect forwarder node selection and rate assignment
Data Packet Forwarding

- Store overheard coded packets
- Forward coded packets at pre-determined rate
- Attacks
 - **Packet Pollution**
 - Epidemic attack propagation
 - **Cannot** be defended with traditional digital signature
 - **Packet Dropping**
 - Challenging to apply monitor-based solution
Acknowledgment Delivery

- Delivered using single path routing
- Reliability achieved via hop-by-hop acknowledgment
- Attacks
 - ACK Injection and Modification
 - ACK Dropping
 - ACK Delay
Inter-Flow Network Coding
Inter-Flow Network Coding

- Mix packets from multiple sources
- Combine multiple unicasts to different next hop nodes into a single broadcast
- **Decodability Condition**
 - The downstream nodes have overheard necessary packets to decode the combined packet

\[
P_1 \rightarrow B \quad P_2 \rightarrow C
\]

B overheard P_2, C overheard P_1
A broadcasts P_1 \oplus P_2
Components of Inter-Flow Network Coding

- Coding opportunity discovery
- Coded packet transmission
- Routing integration
Coding Opportunity Discovery

- **Localized coding** [Katti, et al; Sigcomm 06]
 - Local broadcast of packet reception information
- **Global coding** [Le, et al; ICDCS 08]
 - Maintaining neighboring node set on packet paths
- **Attacks**
 - Packet Reception Information Mis-Reporting
 - Link State Pollution
 - Neighbor Set Pollution

Attacks cause missing coding opportunities or sending undecodable packets
Coded Packet Transmission

- Requires reliability
- Achieved via *pseudo-broadcast*
- Attacks
 - **ACK Injection and Modification**
 - **Packet Pollution**
 - Challenging to apply crypto-based solution
 - **Packet Dropping**
 - Challenging to apply monitor-based solution
Routing Integration

- Use new coding-aware routing metric
- Route computation
 - Decentralized as in on demand routing [Le, et al; ICDCS 08]
 - Centralized as in link state routing [Das, et al; NSDI 08]
- Attacks
 - Coding Benefit Metric Manipulation
 - Allow an attacker to attract or repel traffic
 - More challenging than other metric manipulations
Experimental Evaluations

- Network coding system: MORE [Chachulski, et al; Sigcomm 07]
- Simulator: Glomosim
- Trace driven physical layer
 - MIT Roofnet trace
- 5.5Mbps raw bandwidth
- 250m range
- MORE setup
 - GF(2^8), batch size 32, packet size 1500 bytes
- Source and destination are randomly selected
Attack Setup

- Attacker nodes are selected at random among all forwarding nodes

- Scenarios
 - **Drop-Data**: only data packets are dropped
 - **Drop-ACK**: only ACK packets are dropped
 - **Drop-All**: both data and ACK are dropped
Impact on Multiple Attackers

Packet dropping attacks are very damaging
Impact of Single Attacker

Even a single attacker can cause a large impact
Conclusion

- We reveal a wide range of vulnerabilities in existing network coding systems
 - Pollution is only tip of an iceberg
- Coding introduces new attacks, and makes existing attacks more challenging to defend
- Open Question

Can we design a secure network coding system that still preserves the performance gains?
Questions?

Jing Dong (dongj@cs.purdue.edu)