A Platform for Finding Attacks in Unmodified Implementations of Intrusion Tolerant Systems

Hyojeong Lee*, Jeff Seibert+, Charles Killian* and Cristina Nita-Rotaru*

Department of Computer Science, Purdue University*, MIT Lincoln Laboratory+

Intrusion Tolerant Systems

- Correct operation and make progress even when a fraction of nodes are compromised
- Previous work found attacks that can degrade performance severely so that the system is no longer practically usable
- Finding such attacks is extremely difficult

Related work

- "Gatling: Automatic Attack Discovery in Large-Scale Distributed Systems" NDSS '12
 - Automatically injects malicious actions and greedily search performance attacks
 - Only works with special environments (Mace)

Turret

- A platform for automatically finding performance attacks in unmodified implementations of ITS.
 - Realistic environment: Virtualization + network emulation
 - User provides: Binary + Message Format
 - Automated malicious proxy: Deviates protocol
 - Snapshot/rollback the entire distributed system

Turret Design and Implementation

- Malicious proxy: intercept and manipulate message delivery and contents
- Implemented network emulator snapshot
- Controller can take snapshots of all VMs and the network together

Greedy Approach

1. Execution path
2. A malicious node sends a message of type m_i
3. Take snapshots of all VMs and the network
4. Find the benign baseline $S = \text{perf}(B_i)$
5. For every malicious action a_i take a branch B_i execute protocol for t_i seconds
6. Evaluate $S_i = \text{perf}(B_i)$, choose the worst performance S_i, and update the tally for malicious action a_i

Exhaustive Search:

- Generate all possible list of single actions and combination of actions
- Try each action and see the results

Results

- Applied Turret on three ITS - PBFT - Prime - Steward
- Total 18 attacks found, 16 previously undocumented